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Data Structures & Algorithms for Geometry

Agenda:
● More bounding volumes

• Spheres
• Oriented bounding boxes (OBBs)
• k-DOPs

● Bounding volumes for visibility culling
• BV-frustum intersection

● First assignment
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Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation
● Store the location of the center and the length of the 

radius...just 4 floats

 Intersection test is very simple
● If distance between centers < sum of radii, then 

intersect.

Update also trivial
● Transform center with object's transform.
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● Good thing the update procedure is so trivial!
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Sphere Creation
Non-trivial exercise.

● Good thing the update procedure is so trivial!

A variety of algorithms exist
● Brute-force minimum sphere is O(n5).
● Statistical methods can be used to produce a good 

approximation in O(n).

● A recursive method can produce minimum sphere 
in O(n), but a robust implementation is complex.

● An iterative approach can get within 5% of minimum 
in O(n), but has a higher constant factor.
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Brute­force
A plane is defined by 3 non-colinear.

A sphere is defined by 3 points on a plane and 
one additional point not on the plane.
● In other words, a tetrahedron...4-sided die for the 

D&D geeks. ;)

Consider the sphere defined by all 
combinations of 4 non-coplanar points, keep 
the smallest that contains all the points.
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Ritter's Algorithm
Given an initial guess that is too small, can find 

bounding sphere within 10% of minimum.

Easy to understand and easy to implement.
● I implemented a version in 68000 assembly years 

ago.
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Ritter's Algorithm (cont.)
void bounding_sphere(Sphere &sphere, vector *p, unsigned num)
{
    float r_squared = sphere.radius * sphere.radius;

    for (unsigned i = 0; i < num; i++) {
        const vector d = p[i] – sphere.center;
        const float dist_squared = d.dot3(d);

        if (dist_squared > r_squared) {
            const float dist = sqrt(dist_squared);
            const float r = (sphere.radius + dist) / 2.0f;
            const float k = (r – sphere.radius) / dist;

            sphere.radius = r;
            sphere.center += d * k;
            r_squared = r * r;
        }
    }
}



13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)
What's the big assumption in this algorithm?



13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)
What's the big assumption in this algorithm?

● That we have a good way to come up with an initial 
sphere.

● The better our initial estimate is, the better the final 
result.
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Statistical Estimation
Definitions:

● Mean – sum of all elements divided by number of 
elements (aka average).  Describes the central 
“location” of a random distribution.

● Variance – sum of the squared difference between 
actual values and expected values.  Describes how 
spread out a distribution is.

● Standard deviation – square root of the variance.
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Extending to Multiple Dimensions
Mean is calculated the same way, but is a 

vector instead of a scalar.

Covariance becomes a matrix:

● Here i and j are elements of the source vectors.
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Principal Components Analysis
Covariance by itself does nothing for us.

● A statistical technique called principal components 
analysis (PCA) can help us.

We first calculate the eigenvectors and 
eigenvalues of the covariance matrix.
● Eigenvector - vector that is either left unaffected or 

simply multiplied by a scale factor after the 
transformation (from Wikipedia).

● Eigenvalue – Scale factor of a non-zero 
eigenvector.
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Eh?
The eigenvector with the largest eigenvalue is 

the axis along which the original data has the 
largest variance.

Similarly the eigenvector with the smallest 
eigenvalue is the axis along which the original 
data has the smallest variance.
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Ah!
The eigenvector with the largest eigenvalue is 

the axis along which the original data has the 
largest variance.

Similarly the eigenvector with the smallest 
eigenvalue is the axis along which the original 
data has the smallest variance.

 If we know the axis with the largest variance, 
we can find the two widest spread points along 
that axis to get our initial sphere estimate!
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Welzl's Algorithm
 If we have a bounding sphere, S, for set of 

points, P, and we add a point, U, that “extends” 
the sphere, we know that U is on the boundary 
of the new sphere.
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Welzl's Algorithm
 If we have a bounding sphere, S, for set of 

points, P, and we add a point, U, that “extends” 
the sphere, we know that U is on the boundary 
of the new sphere.
● We can track the points on the boundary of the 

current sphere in a “support set.”
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Welzl's Algorithm (cont.)
On each iteration, remove a point, U, from the 

set, and invoke the algorithm on the remaining 
set.

 If U is inside the returned sphere, return that 
sphere now.

 If U is outside the sphere, add it to the support 
set and re-invoke the algorithm with the 
remaining set.
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Welzl's Algorithm (cont.)
At the tail of the recurrsion (when the point set 

is empty) return the sphere created from the at 
most 4 points in the support set.
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Welzl's Algorithm (cont.)
This algorithm is a bit complicated to think 

about, but that's not the only problem.
● There are two recursions, and the first one can 

easily cause a stack overflow.

● That can be worked around, but complicates things 
futher.

 Inspite of all that, it still runs in expected O(n) 
time and yields a minimum bounding sphere.
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Remember that Ritter's algorithm needs a good 

initial guess?
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Ritter's Algorithm Revisited
Remember that Ritter's algorithm needs a good 

initial guess?

Use the output of one iteration to seed the next!
● Take the result and shrink it a bit.

● Add the points in random order.

● Lather, rinse, repeat.
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Break
You've earned it!
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Oriented Bounding Boxes (OBBs)
OBBs have some interesting subtleties.

Update is trivial.
● Perform one matrix multiply, and transform one 

point.

 Intersection test more complex than spheres or 
AABBs
● Can use a similar overlap test, but it is more 

complex and requires more computation.

Creation of an optimal OBB is challenging.
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OBB Representation
How would you represent an OBB?

Storing 8 points seems like an obvious choice, 
but has some drawbacks.
● Requires a lot of storage: 8 points × 3 floats × 4 

bytes = 96 bytes per OBB.

● Leads to suboptimal overlap test.
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OBB Representation
Best method is an extension of the best AABB 

representation:
● Store the center, per-axis radii, and a 

transformation (rotations only) matrix.

To update, simply transform the center and 
append the object's transformation to the OBBs 
base transform.
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OBB Intersection
Surprisingly complicated.

● Can't just test box extent overlaps like AABBs.

● Can't just test corners of box A to see if they are in 
box B.

Have to use the Separating Axis Test.
● We'll cover this in more detail when we get to 

chapter 5.
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Separating Axis Test
Find an axis in space that we can project the 

BVs and have them not overlap.
● Simplified version for AABBs: project onto the 

principal axes.

● For OBBs, there are 15 axes that must be tested.
• Full mathematical proof is beyond our scope.
• Table 4.1 in the textbook lists them.

Note: the test is made efficient by transforming 
one OBB to the other OBBs coordinate system.
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Separating Axis Test
Find an axis in space that we can project the 

BVs and have them not overlap.
● Simplified version for AABBs: project onto the 

principal axes.

● For OBBs, there are 15 axes that must be tested.
• Full mathematical proof is beyond our scope.
• Table 4.1 in the textbook lists them.

Note: the test is made efficient by transforming 
one OBB to the other OBBs coordinate system.
● Use the inverse of the OBBs base transform.
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Any thoughts?
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OBB Creation
Any thoughts?

● Could probably start using a bounding sphere to 
estimate longest axis.

● If we have the convex hull, we know that one of the 
sides of the hull must be coplanar with one side of 
the OBBs.  Could probably get an O(n2 log n) from 
that.

● Sphere calculation is a good idea...could we apply 
PCA to get an OBB?
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PCA for OBB
Once we have the eigenvectors and 

eigenvalues, we have the axes for the OBB.
● After normalizing, these can be used as the base 

transform for the OBB.
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PCA for OBB
Once we have the eigenvectors and 

eigenvalues, we have the axes for the OBB.
● After normalizing, these can be used as the base 

transform for the OBB.

The bad news is that PCA based OBBs are not 
optimal.
● Non-uniform distribution of object points can skew 

the calculation.

● Using the convex hull helps but isn't a silver bullet.
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Improving PCA­based OBBs
Start by projecting all points onto the plane 

defined by the minimum eigenvector.

Then find the minimum area rectangle 
enclosing the points.
● This rectangle defines the other two edges of the 

OBB.

● Compute in O(n log n) by computing the 2D convex 
hull and testing each rectangle that has a side 
colinear with a side of the hull.

Repeat on the new OBB.
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k­DOPs
Select n axes.

● The same axes are used for all objects.

● Selected in advance and, typically, hard-coded.

Find the minimum and maximum distances 
from each axis.

Store these 2n values.
● 2n = k
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Example
2D 6-DOP

● Note the improvement 
over an AABB
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Example
2D 6-DOP

● Note the improvement 
over an AABB

● Notice that removing 
one axis would make 
a 4-DOP that is an 
AABB.
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k­DOP Intersection Test
Since AABBs are really k-DOPs, we can 

generalize the AABB intersection test.

bool kdop_intersect(kdop &a, kdop &b)
{
    for (unsigned i = 0; i < a.k / 2; i++) {
        if (a.min[i] > b.max[i]
            || a.max[i] < b.min[i])
            return false;
    }

    return true
}
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k­DOP Update
Again, think of k-DOPs as a generalization of 

AABBs, and apply the same techniques.
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BV Intersections with Frustums
Of fundamental importance: determine which 

side of a plane, P, a point, p, is on.
● We call the side of the plane with the normal the 

“positive” side and the other side the “negative” 
side.

● The formal name for a side is half-space.

Plug p into the plane equation of P.

● If the result is negative, the point is in the negative 
half-space.

np⋅pdP
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Point in Frustum Test
A frustum is defined by 6 planes.

● Assume the normals point out.

A point is inside the frustum if it is in the 
negative half-space of every plane.
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Sphere in Frustum Test
 “Grow” the frustum by the radius of the sphere.

● Move each plane in the direction of it's normal by 
the radius of the sphere.
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Sphere in Frustum Test
 “Grow” the frustum by the radius of the sphere.

● Move each plane in the direction of it's normal by 
the radius of the sphere.

● Treat the sphere as a point (i.e., shrink the sphere 
by its radius), and test the point against the new 
frustum.

ni⋅pdirsphere
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Box in Frustum Test
Test each corner of 

the box.  If all corners 
are outside the 
frustum, then box is 
outside.
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Box in Frustum Test
Test each corner of 

the box.  If all corners 
are outside the 
frustum, then box is 
outside. Wrong!

 If all corners are on 
positive side of any 
one plane, then the 
box is outside.
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Better Box / Frustum Test
Lots of extra tests.

● We don't need to test all 8 points.
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Better Box / Frustum Test
Lots of extra tests.

● We don't need to test all 8 points.

Pick the points that should be “most positive” 
and “most negative” for each plane.
● Call these the p-vertex and the n-vertex.

Just test those points.
● If both are on the same side of the plane, then all of 

the points must be on that same side.
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Finding n­vertex and p­vertex
Assume the frustum is in the box's coordinate 

space.

Look at the signs of the components of the 
plane's normal.

Use the signs to determine which corner the 
normal points toward.
● Example: If the normal signs are { +, +, - }, then the 

p-vertex is { box.radius.x, box.radius.y, -box.
radius.z }.
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Pseudo Code
int frustum_aabb(Plane *planes, Aabb &aabb)
{
    bool intersect = false;
    for (unsigned i = 0; i < 6; i++) {
        vector vn = 
          get_negative_far_point(planes[i], aabb);
        if (vn.dot3(planes[i].n) + planes[i].d > 0)
            return OUTSIDE;

        vector vp = 
          get_positive_far_point(planes[i], aabb);
        if (vp.dot3(planes[i].n) + planes[i].d > 0)
            intersect = true;
    }

    return (intersect) ? INTERSECTING : INSIDE;
}
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Break
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Next week...
Convex hulls (this time for sure!)

Bounding volume hierarchies
● Building

● Traversing

● Merging

Assignment #1 due.

Assignment #2 assigned.
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