
13-October-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● More bounding volumes

• Spheres
• Oriented bounding boxes (OBBs)
• k-DOPs

● Bounding volumes for visibility culling
• BV-frustum intersection

● First assignment

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation
● Store the location of the center and the length of the

radius...just 4 floats

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation
● Store the location of the center and the length of the

radius...just 4 floats

 Intersection test is very simple

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation
● Store the location of the center and the length of the

radius...just 4 floats

 Intersection test is very simple
● If distance between centers < sum of radii, then

intersect.

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation
● Store the location of the center and the length of the

radius...just 4 floats

 Intersection test is very simple
● If distance between centers < sum of radii, then

intersect.

Update also trivial

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres
Very commonly used

● Used last year in VGP351 for collision detection.

Simple compact representation
● Store the location of the center and the length of the

radius...just 4 floats

 Intersection test is very simple
● If distance between centers < sum of radii, then

intersect.

Update also trivial
● Transform center with object's transform.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation
Non-trivial exercise.

● Good thing the update procedure is so trivial!

A variety of algorithms exist
● Brute-force minimum sphere is O(n5).

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation
Non-trivial exercise.

● Good thing the update procedure is so trivial!

A variety of algorithms exist
● Brute-force minimum sphere is O(n5).
● Statistical methods can be used to produce a good

approximation in O(n).

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation
Non-trivial exercise.

● Good thing the update procedure is so trivial!

A variety of algorithms exist
● Brute-force minimum sphere is O(n5).
● Statistical methods can be used to produce a good

approximation in O(n).

● A recursive method can produce minimum sphere
in O(n), but a robust implementation is complex.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation
Non-trivial exercise.

● Good thing the update procedure is so trivial!

A variety of algorithms exist
● Brute-force minimum sphere is O(n5).
● Statistical methods can be used to produce a good

approximation in O(n).

● A recursive method can produce minimum sphere
in O(n), but a robust implementation is complex.

● An iterative approach can get within 5% of minimum
in O(n), but has a higher constant factor.

13-October-2007 © Copyright Ian D. Romanick 2007

Brute­force
A plane is defined by 3 non-colinear.

A sphere is defined by 3 points on a plane and
one additional point not on the plane.
● In other words, a tetrahedron...4-sided die for the

D&D geeks. ;)

Consider the sphere defined by all
combinations of 4 non-coplanar points, keep
the smallest that contains all the points.

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm
Given an initial guess that is too small, can find

bounding sphere within 10% of minimum.

Easy to understand and easy to implement.
● I implemented a version in 68000 assembly years

ago.

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)
void bounding_sphere(Sphere &sphere, vector *p, unsigned num)
{
 float r_squared = sphere.radius * sphere.radius;

 for (unsigned i = 0; i < num; i++) {
 const vector d = p[i] – sphere.center;
 const float dist_squared = d.dot3(d);

 if (dist_squared > r_squared) {
 const float dist = sqrt(dist_squared);
 const float r = (sphere.radius + dist) / 2.0f;
 const float k = (r – sphere.radius) / dist;

 sphere.radius = r;
 sphere.center += d * k;
 r_squared = r * r;
 }
 }
}

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)
What's the big assumption in this algorithm?

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)
What's the big assumption in this algorithm?

● That we have a good way to come up with an initial
sphere.

● The better our initial estimate is, the better the final
result.

13-October-2007 © Copyright Ian D. Romanick 2007

Statistical Estimation
Definitions:

● Mean – sum of all elements divided by number of
elements (aka average). Describes the central
“location” of a random distribution.

● Variance – sum of the squared difference between
actual values and expected values. Describes how
spread out a distribution is.

● Standard deviation – square root of the variance.

u=
1
n
i=1
n xi


2
=

1
n
i=1
n

xi−u
2
=

1
n

i=1
n xi

2 −u2

13-October-2007 © Copyright Ian D. Romanick 2007

Extending to Multiple Dimensions
Mean is calculated the same way, but is a

vector instead of a scalar.

Covariance becomes a matrix:

● Here i and j are elements of the source vectors.

C ij=
1
n
k=1
n  Pk , i−ui   Pk , j−u j 

Cij=
1
n

k=1
n Pk , iPk , j −uiu j

13-October-2007 © Copyright Ian D. Romanick 2007

Principal Components Analysis
Covariance by itself does nothing for us.

● A statistical technique called principal components
analysis (PCA) can help us.

We first calculate the eigenvectors and
eigenvalues of the covariance matrix.
● Eigenvector - vector that is either left unaffected or

simply multiplied by a scale factor after the
transformation (from Wikipedia).

● Eigenvalue – Scale factor of a non-zero
eigenvector.

13-October-2007 © Copyright Ian D. Romanick 2007

Eh?
The eigenvector with the largest eigenvalue is

the axis along which the original data has the
largest variance.

Similarly the eigenvector with the smallest
eigenvalue is the axis along which the original
data has the smallest variance.

13-October-2007 © Copyright Ian D. Romanick 2007

Ah!
The eigenvector with the largest eigenvalue is

the axis along which the original data has the
largest variance.

Similarly the eigenvector with the smallest
eigenvalue is the axis along which the original
data has the smallest variance.

 If we know the axis with the largest variance,
we can find the two widest spread points along
that axis to get our initial sphere estimate!

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm
 If we have a bounding sphere, S, for set of

points, P, and we add a point, U, that “extends”
the sphere, we know that U is on the boundary
of the new sphere.

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm
 If we have a bounding sphere, S, for set of

points, P, and we add a point, U, that “extends”
the sphere, we know that U is on the boundary
of the new sphere.
● We can track the points on the boundary of the

current sphere in a “support set.”

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm (cont.)
On each iteration, remove a point, U, from the

set, and invoke the algorithm on the remaining
set.

 If U is inside the returned sphere, return that
sphere now.

 If U is outside the sphere, add it to the support
set and re-invoke the algorithm with the
remaining set.

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm (cont.)
At the tail of the recurrsion (when the point set

is empty) return the sphere created from the at
most 4 points in the support set.

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm (cont.)
This algorithm is a bit complicated to think

about, but that's not the only problem.
● There are two recursions, and the first one can

easily cause a stack overflow.

● That can be worked around, but complicates things
futher.

 Inspite of all that, it still runs in expected O(n)
time and yields a minimum bounding sphere.

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm Revisited
Remember that Ritter's algorithm needs a good

initial guess?

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm Revisited
Remember that Ritter's algorithm needs a good

initial guess?

Use the output of one iteration to seed the next!
● Take the result and shrink it a bit.

● Add the points in random order.

● Lather, rinse, repeat.

13-October-2007 © Copyright Ian D. Romanick 2007

Break
You've earned it!

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)
OBBs have some interesting subtleties.

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)
OBBs have some interesting subtleties.

Update is trivial.
● Perform one matrix multiply, and transform one

point.

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)
OBBs have some interesting subtleties.

Update is trivial.
● Perform one matrix multiply, and transform one

point.

 Intersection test more complex than spheres or
AABBs
● Can use a similar overlap test, but it is more

complex and requires more computation.

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)
OBBs have some interesting subtleties.

Update is trivial.
● Perform one matrix multiply, and transform one

point.

 Intersection test more complex than spheres or
AABBs
● Can use a similar overlap test, but it is more

complex and requires more computation.

Creation of an optimal OBB is challenging.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Representation
How would you represent an OBB?

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Representation
How would you represent an OBB?

Storing 8 points seems like an obvious choice,
but has some drawbacks.
● Requires a lot of storage: 8 points × 3 floats × 4

bytes = 96 bytes per OBB.

● Leads to suboptimal overlap test.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Representation
Best method is an extension of the best AABB

representation:
● Store the center, per-axis radii, and a

transformation (rotations only) matrix.

To update, simply transform the center and
append the object's transformation to the OBBs
base transform.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Intersection
Surprisingly complicated.

● Can't just test box extent overlaps like AABBs.

● Can't just test corners of box A to see if they are in
box B.

Have to use the Separating Axis Test.
● We'll cover this in more detail when we get to

chapter 5.

13-October-2007 © Copyright Ian D. Romanick 2007

Separating Axis Test
Find an axis in space that we can project the

BVs and have them not overlap.
● Simplified version for AABBs: project onto the

principal axes.

● For OBBs, there are 15 axes that must be tested.
• Full mathematical proof is beyond our scope.
• Table 4.1 in the textbook lists them.

Note: the test is made efficient by transforming
one OBB to the other OBBs coordinate system.

13-October-2007 © Copyright Ian D. Romanick 2007

Separating Axis Test
Find an axis in space that we can project the

BVs and have them not overlap.
● Simplified version for AABBs: project onto the

principal axes.

● For OBBs, there are 15 axes that must be tested.
• Full mathematical proof is beyond our scope.
• Table 4.1 in the textbook lists them.

Note: the test is made efficient by transforming
one OBB to the other OBBs coordinate system.
● Use the inverse of the OBBs base transform.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation
Any thoughts?

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation
Any thoughts?

● Could probably start using a bounding sphere to
estimate longest axis.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation
Any thoughts?

● Could probably start using a bounding sphere to
estimate longest axis.

● If we have the convex hull, we know that one of the
sides of the hull must be coplanar with one side of
the OBBs. Could probably get an O(n2 log n) from
that.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation
Any thoughts?

● Could probably start using a bounding sphere to
estimate longest axis.

● If we have the convex hull, we know that one of the
sides of the hull must be coplanar with one side of
the OBBs. Could probably get an O(n2 log n) from
that.

● Sphere calculation is a good idea...could we apply
PCA to get an OBB?

13-October-2007 © Copyright Ian D. Romanick 2007

PCA for OBB
Once we have the eigenvectors and

eigenvalues, we have the axes for the OBB.
● After normalizing, these can be used as the base

transform for the OBB.

13-October-2007 © Copyright Ian D. Romanick 2007

PCA for OBB
Once we have the eigenvectors and

eigenvalues, we have the axes for the OBB.
● After normalizing, these can be used as the base

transform for the OBB.

The bad news is that PCA based OBBs are not
optimal.
● Non-uniform distribution of object points can skew

the calculation.

● Using the convex hull helps but isn't a silver bullet.

13-October-2007 © Copyright Ian D. Romanick 2007

Improving PCA­based OBBs
Start by projecting all points onto the plane

defined by the minimum eigenvector.

Then find the minimum area rectangle
enclosing the points.
● This rectangle defines the other two edges of the

OBB.

● Compute in O(n log n) by computing the 2D convex
hull and testing each rectangle that has a side
colinear with a side of the hull.

Repeat on the new OBB.

13-October-2007 © Copyright Ian D. Romanick 2007

k­DOPs
Select n axes.

● The same axes are used for all objects.

● Selected in advance and, typically, hard-coded.

Find the minimum and maximum distances
from each axis.

Store these 2n values.
● 2n = k

13-October-2007 © Copyright Ian D. Romanick 2007

Example
2D 6-DOP

● Note the improvement
over an AABB

13-October-2007 © Copyright Ian D. Romanick 2007

Example
2D 6-DOP

● Note the improvement
over an AABB

● Notice that removing
one axis would make
a 4-DOP that is an
AABB.

13-October-2007 © Copyright Ian D. Romanick 2007

k­DOP Intersection Test
Since AABBs are really k-DOPs, we can

generalize the AABB intersection test.

bool kdop_intersect(kdop &a, kdop &b)
{
 for (unsigned i = 0; i < a.k / 2; i++) {
 if (a.min[i] > b.max[i]
 || a.max[i] < b.min[i])
 return false;
 }

 return true
}

13-October-2007 © Copyright Ian D. Romanick 2007

k­DOP Update
Again, think of k-DOPs as a generalization of

AABBs, and apply the same techniques.

13-October-2007 © Copyright Ian D. Romanick 2007

BV Intersections with Frustums
Of fundamental importance: determine which

side of a plane, P, a point, p, is on.
● We call the side of the plane with the normal the

“positive” side and the other side the “negative”
side.

● The formal name for a side is half-space.

Plug p into the plane equation of P.

● If the result is negative, the point is in the negative
half-space.

np⋅pdP

13-October-2007 © Copyright Ian D. Romanick 2007

Point in Frustum Test
A frustum is defined by 6 planes.

● Assume the normals point out.

A point is inside the frustum if it is in the
negative half-space of every plane.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere in Frustum Test
 “Grow” the frustum by the radius of the sphere.

● Move each plane in the direction of it's normal by
the radius of the sphere.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere in Frustum Test
 “Grow” the frustum by the radius of the sphere.

● Move each plane in the direction of it's normal by
the radius of the sphere.

ni⋅pdir sphere

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere in Frustum Test
 “Grow” the frustum by the radius of the sphere.

● Move each plane in the direction of it's normal by
the radius of the sphere.

● Treat the sphere as a point (i.e., shrink the sphere
by its radius), and test the point against the new
frustum.

ni⋅pdirsphere

13-October-2007 © Copyright Ian D. Romanick 2007

Box in Frustum Test
Test each corner of

the box. If all corners
are outside the
frustum, then box is
outside.

13-October-2007 © Copyright Ian D. Romanick 2007

Box in Frustum Test
Test each corner of

the box. If all corners
are outside the
frustum, then box is
outside. Wrong!

 If all corners are on
positive side of any
one plane, then the
box is outside.

13-October-2007 © Copyright Ian D. Romanick 2007

Better Box / Frustum Test
Lots of extra tests.

● We don't need to test all 8 points.

13-October-2007 © Copyright Ian D. Romanick 2007

Better Box / Frustum Test
Lots of extra tests.

● We don't need to test all 8 points.

Pick the points that should be “most positive”
and “most negative” for each plane.
● Call these the p-vertex and the n-vertex.

Just test those points.
● If both are on the same side of the plane, then all of

the points must be on that same side.

13-October-2007 © Copyright Ian D. Romanick 2007

Finding n­vertex and p­vertex
Assume the frustum is in the box's coordinate

space.

Look at the signs of the components of the
plane's normal.

Use the signs to determine which corner the
normal points toward.
● Example: If the normal signs are { +, +, - }, then the

p-vertex is { box.radius.x, box.radius.y, -box.
radius.z }.

13-October-2007 © Copyright Ian D. Romanick 2007

Pseudo Code
int frustum_aabb(Plane *planes, Aabb &aabb)
{
 bool intersect = false;
 for (unsigned i = 0; i < 6; i++) {
 vector vn =
 get_negative_far_point(planes[i], aabb);
 if (vn.dot3(planes[i].n) + planes[i].d > 0)
 return OUTSIDE;

 vector vp =
 get_positive_far_point(planes[i], aabb);
 if (vp.dot3(planes[i].n) + planes[i].d > 0)
 intersect = true;
 }

 return (intersect) ? INTERSECTING : INSIDE;
}

13-October-2007 © Copyright Ian D. Romanick 2007

References
http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf

http://www.ce.chalmers.se/~uffe/vfc.pdf

http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf
http://www.ce.chalmers.se/~uffe/vfc.pdf

13-October-2007 © Copyright Ian D. Romanick 2007

Break

13-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Convex hulls (this time for sure!)

Bounding volume hierarchies
● Building

● Traversing

● Merging

Assignment #1 due.

Assignment #2 assigned.

13-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

