Data Structures & Algorithms for Geometry

> Agenda:

® More bounding volumes
- Spheres
* Oriented bounding boxes (OBBS)
- k-DOPs
® Bounding volumes for visibility culling
- BV-frustum intersection

® First assignment

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.
> Simple compact representation

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.
> Simple compact representation

® Store the location of the center and the length of the
radius...just 4 floats

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.
> Simple compact representation

® Store the location of the center and the length of the
radius...just 4 floats

> Intersection test is very simple

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.
> Simple compact representation

® Store the location of the center and the length of the
radius...just 4 floats

> Intersection test is very simple

e |f distance between centers < sum of radii, then
Intersect.

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.
> Simple compact representation

® Store the location of the center and the length of the
radius...just 4 floats

> Intersection test is very simple

e |f distance between centers < sum of radii, then
Intersect.

> Update also trivial

13-October-2007 © Copyright Ian D. Romanick 2007

Bounding Spheres

>Very commonly used
® Used last year in VGP351 for collision detection.
> Simple compact representation

® Store the location of the center and the length of the
radius...just 4 floats

> Intersection test is very simple

e |f distance between centers < sum of radii, then
Intersect.

> Update also trivial
zocofdbansform centecwith.-ehjectsdtransform.

Sphere Creation

= Non-trivial exercise.
® Good thing the update procedure is so trivial!
> A variety of algorithms exist

e Brute-force minimum sphere is O(n°).

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation

= Non-trivial exercise.
® Good thing the update procedure is so trivial!
> A variety of algorithms exist

e Brute-force minimum sphere is O(n°).

e Statistical methods can be used to produce a good
approximation in O(n).

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation

= Non-trivial exercise.
® Good thing the update procedure is so trivial!
> A variety of algorithms exist

e Brute-force minimum sphere is O(n°).

e Statistical methods can be used to produce a good
approximation in O(n).

® A recursive method can produce minimum sphere
In O(n), but a robust iImplementation is complex.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere Creation

= Non-trivial exercise.
® Good thing the update procedure is so trivial!
> A variety of algorithms exist

e Brute-force minimum sphere is O(n°).

e Statistical methods can be used to produce a good
approximation in O(n).

® A recursive method can produce minimum sphere
In O(n), but a robust iImplementation is complex.

® An iterative approach can get within 5% of minimum
iIn O(n), but has a higher constant factor.

13-October-2007 © Copyright Ian D. Romanick 2007

Brute-force

> A plane is defined by 3 non-colinear.

> A sphere Is defined by 3 points on a plane and
one additional point not on the plane.

® |n other words, a tetrahedron...4-sided die for the
D&D geeks. ;)

> Consider the sphere defined by all
combinations of 4 non-coplanar points, keep
the smallest that contains all the points.

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm

= Given an initial guess that Is too small, can find
bounding sphere within 10% of minimum.

> Easy to understand and easy to implement.

® | iImplemented a version in 68000 assembly years
ago.

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)

void bounding_sphere(Sphere &sphere, vector *p, unsigned num)

{

float r_squared = sphere.radius * sphere.radius;

for (unsigned 1 = 0; i1 < num; i++) {
const vector d = p[1] - sphere.center;
const float dist_squared = d.dot3(d);

1f (dist_squared > r_squared) {
const float dist = sqrt(dist_squared);
const float r (sphere.radius + dist) / 2.0f;
const float k (r - sphere.radius) / dist;

sphere.radius = r;
sphere.center += d * k;
r_squared = r * r;

¥
¥

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)

> What's the big assumption in this algorithm?

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm (cont.)

> What's the big assumption in this algorithm?

® That we have a good way to come up with an initial
sphere.

® The better our Initial estimate Is, the better the final
result.

13-October-2007 © Copyright Ian D. Romanick 2007

Statistical Estimation

< Definitions:

® Mean — sum of all elements divided by number of
elements (aka average). Describes the central
“location” of a random distribution.

1
u=—23_,x
n

® VVariance — sum of the squared difference between
actual values and expected values. Describes how
spread out a distribution is.
1 > 1

2
U :EZ?:1<X1'_”) o

o2 Standard deviation — square root of the variance.

pyright lan

n 2 2
Zizlxi)—u

Extending to Multiple Dimensions

> Mean is calculated the same way, but is a
vector instead of a scalar.

< Covariance becomes a matrix:

1 <n
CU:E Zkzl(Pk,i_ui)(Pk,j_uj)

1| en
Cij:H ZkzlPk,l.Pk,j)—uiuj

® Here / and J are elements of the source vectors.

13-October-2007 © Copyright Ian D. Romanick 2007

Principal Components Analysis

> Covariance by itself does nothing for us.

e A statistical technique called principal components
analysis (PCA) can help us.

> We first calculate the eigenvectors and
eigenvalues of the covariance matrix.

® Eigenvector - vector that is either left unaffected or
simply multiplied by a scale factor after the
transformation (from Wikipedia).

® Eigenvalue — Scale factor of a non-zero
eigenvector.

13-October-2007 © Copyright Ian D. Romanick 2007

Eh?

> The eigenvector with the largest eigenvalue Is
the axis along which the original data has the
largest variance.

> Similarly the eigenvector with the smallest
eigenvalue Is the axis along which the original
data has the smallest variance.

13-October-2007 © Copyright Ian D. Romanick 2007

Ah!

> The eigenvector with the largest eigenvalue Is
the axis along which the original data has the
largest variance.

> Similarly the eigenvector with the smallest
eigenvalue Is the axis along which the original
data has the smallest variance.

> If we know the axis with the largest variance,
we can find the two widest spread points along
that axis to get our Initial sphere estimate!

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm

> If we have a bounding sphere, S, for set of
points, P, and we add a point, U, that “extends”
the sphere, we know that U is on the boundary
of the new sphere.

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm

> If we have a bounding sphere, S, for set of
points, P, and we add a point, U, that “extends”
the sphere, we know that U is on the boundary
of the new sphere.

e \We can track the points on the boundary of the
current sphere in a “support set.”

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm (cont.)

= On each iteration, remove a point, U, from the
set, and invoke the algorithm on the remaining
set.

2If U is inside the returned sphere, return that
sphere now.

2If U Is outside the sphere, add it to the support
set and re-invoke the algorithm with the
remaining set.

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm (cont.)

> At the tail of the recurrsion (when the point set
IS empty) return the sphere created from the at
most 4 points In the support set.

13-October-2007 © Copyright Ian D. Romanick 2007

Welzl's Algorithm (cont.)

= This algorithm Is a bit complicated to think
about, but that's not the only problem.

® There are two recursions, and the first one can
easily cause a stack overflow.

e That can be worked around, but complicates things
futher.

< Inspite of all that, it still runs in expected O(n)
time and yields a minimum bounding sphere.

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm Revisited

> Remember that Ritter's algorithm needs a good
Initial guess?

13-October-2007 © Copyright Ian D. Romanick 2007

Ritter's Algorithm Revisited

> Remember that Ritter's algorithm needs a good
Initial guess?

> Use the output of one iteration to seed the next!

® Take the result and shrink it a bit.
® Add the points in random order.
e Lather, rinse, repeat.

13-October-2007 © Copyright Ian D. Romanick 2007

Break

You've earned It!

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)

> OBBs have some interesting subtleties.

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)

> OBBs have some interesting subtleties.
> Update is trivial.

® Perform one matrix multiply, and transform one
point.

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)

> OBBs have some interesting subtleties.
> Update is trivial.

® Perform one matrix multiply, and transform one
point.

2 Intersection test more complex than spheres or
JAVAY21=1S

e Can use a similar overlap test, but it is more
complex and requires more computation.

13-October-2007 © Copyright Ian D. Romanick 2007

Oriented Bounding Boxes (OBBs)

> OBBs have some interesting subtleties.
> Update is trivial.

® Perform one matrix multiply, and transform one
point.

2 Intersection test more complex than spheres or
JAVAY21=1S

e Can use a similar overlap test, but it is more
complex and requires more computation.

> Creation of an optimal OBB Is challenging.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Representation

> How would you represent an OBB?

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Representation

> How would you represent an OBB?

> Storing 8 points seems like an obvious choice,
but has some drawbacks.

® Requires a lot of storage: 8 points X 3 floats X 4
pytes = 96 bytes per OBB.

® | eads to suboptimal overlap test.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Representation

> Best method Is an extension of the best AABB
representation:

® Store the center, per-axis radii, and a
transformation (rotations only) matrix.

= To update, simply transform the center and
append the object's transformation to the OBBs
base transform.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Intersection

= Surprisingly complicated.
e Can't just test box extent overlaps like AABBs.

e Can't just test corners of box A to see if they are In
box B.

> Have to use the Separating Axis Test.

e \We'll cover this in more detail when we get to
chapter 5.

13-October-2007 © Copyright Ian D. Romanick 2007

Separating Axis Test

= Find an axis In space that we can project the
BVs and have them not overlap.

e Simplified version for AABBS: project onto the
principal axes.

® For OBBSs, there are 15 axes that must be tested.

- Full mathematical proof is beyond our scope.
- Table 4.1 in the textbook lists them.

> Note: the test iIs made efficient by transforming
one OBB to the other OBBs coordinate system.

13-October-2007 © Copyright Ian D. Romanick 2007

Separating Axis Test

= Find an axis In space that we can project the
BVs and have them not overlap.

e Simplified version for AABBS: project onto the
principal axes.

® For OBBSs, there are 15 axes that must be tested.

- Full mathematical proof is beyond our scope.
- Table 4.1 in the textbook lists them.

> Note: the test iIs made efficient by transforming
one OBB to the other OBBs coordinate system.

® Use the inverse of the OBBs base transform.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation

> Any thoughts?

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation

> Any thoughts?

® Could probably start using a bounding sphere to
estimate longest axis.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation

> Any thoughts?

® Could probably start using a bounding sphere to
estimate longest axis.

e If we have the convex hull, we know that one of the
sides of the hull must be coplanar with one side of
the OBBs. Could probably get an O(n® log n) from
that.

13-October-2007 © Copyright Ian D. Romanick 2007

OBB Creation

> Any thoughts?

® Could probably start using a bounding sphere to
estimate longest axis.

e If we have the convex hull, we know that one of the
sides of the hull must be coplanar with one side of
the OBBs. Could probably get an O(n® log n) from
that.

® Sphere calculation is a good idea...could we apply
PCA to get an OBB?

13-October-2007 © Copyright Ian D. Romanick 2007

PCA for OBB

> Once we have the eigenvectors and
eigenvalues, we have the axes for the OBB.

e After normalizing, these can be used as the base
transform for the OBB.

13-October-2007 © Copyright Ian D. Romanick 2007

PCA for OBB

> Once we have the eigenvectors and
eigenvalues, we have the axes for the OBB.

e After normalizing, these can be used as the base
transform for the OBB.

> The bad news iIs that PCA based OBBs are not
optimal.

® Non-uniform distribution of object points can skew
the calculation.

® Using the convex hull helps but isn't a silver bullet.

13-October-2007 © Copyright Ian D. Romanick 2007

Improving PCA-based OBBs

> Start by projecting all points onto the plane
defined by the minimum eigenvector.

= Then find the minimum area rectangle
enclosing the points.

® This rectangle defines the other two edges of the
OBB.

e Compute in O(n log n) by computing the 2D convex
hull and testing each rectangle that has a side
colinear with a side of the hull.

> Repeat on the new OBB.

13-October-2007 © Copyright Ian D. Romanick 2007

k-DOPs

> Select n axes.

® The same axes are used for all objects.
e Selected in advance and, typically, hard-coded.

2 Find the minimum and maximum distances
from each axis.

> Store these 2n values.
e2n =Kk

13-October-2007 © Copyright Ian D. Romanick 2007

Example
©2D 6-DOP

® Note the improvement
over an AABB

13-October-2007 © Copyright Ian D. Romanick 2007

Example

22D 6-DOP

® Note the improvement
over an AABB

® Notice that removing
one axis would make
a 4-DOP that is an
AABB.

13-October-2007 © Copyright Ian D. Romanick 2007

k-DOP Intersection Test

> Since AABBs are really k-DOPs, we can
generalize the AABB intersection test.

bool kdop_intersect(kdop &a, kdop &b)
{
for (unsigned 1 = 0; 1 < a.k / 2; 1++) {
1f (a.min[1] > b.max[1]
|| a.max[1] < b.min[1])
return false;

}

return true

}

13-October-2007 © Copyright Ian D. Romanick 2007

k-DOP Update

> Again, think of k-DOPs as a generalization of
AABBSs, and apply the same techniques.

13-October-2007 © Copyright Ian D. Romanick 2007

BV Intersections with Frustums

> Of fundamental importance: determine which
side of a plane, P, a point, p, Is on.

® \We call the side of the plane with the normal the
‘positive” side and the other side the “negative”
side.

® The formal name for a side Is half-space.

> Plug p into the plane equation of P.
(np'p)+dp

e If the result Is negative, the point is in the negative
half-space.

13-October-2007 © Copyright Ian D. Romanick 2007

Point in Frustum Test

= A frustum is defined by 6 planes.
® Assume the normals point out.

> A point is inside the frustum if it Is Iin the
negative half-space of every plane.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere in Frustum Test

>"“Grow” the frustum by the radius of the sphere.

® Move each plane in the direction of it's normal by
the radius of the sphere.

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere in Frustum Test

>"“Grow” the frustum by the radius of the sphere.

® Move each plane in the direction of it's normal by
the radius of the sphere.

(ni'p)+(di+r

sphere)

13-October-2007 © Copyright Ian D. Romanick 2007

Sphere in Frustum Test

>"“Grow” the frustum by the radius of the sphere.

® Move each plane in the direction of it's normal by
the radius of the sphere.

(ni.p)_l_(di_l_rsphere)
® Treat the sphere as a point (i.e., shrink the sphere

by its radius), and test the point against the new
frustum.

13-October-2007 © Copyright Ian D. Romanick 2007

Box in Frustum Test

2> Test each corner of
the box. If all corners
are outside the
frustum, then box Is
outside.

13-October-2007 © Copyright Ian D. Romanick 2007

Box in Frustum Test

S Festeach-cornerof
et earmers
So—sHside—tae
Frostre—thepbesas
edtstde: Wrong!

2If all corners are on
positive side of any A

one plane, then the
box Is outside.

13-October-2007 © Copyright Ian D. Romanick 2007

Better Box / Frustum Test

> Lots of extra tests.
e \We don't need to test all 8 points.

13-October-2007 © Copyright Ian D. Romanick 2007

Better Box / Frustum Test

> Lots of extra tests.
e \We don't need to test all 8 points.

> Pick the points that should be “most positive”
and “most negative” for each plane.

e Call these the p-vertex and the n-vertex.
> Just test those points.

e If both are on the same side of the plane, then all of
the points must be on that same side.

13-October-2007 © Copyright Ian D. Romanick 2007

Finding n-vertex and p-vertex

2 Assume the frustum is In the box's coordinate
space.

> Look at the signs of the components of the
nlane's normal.

> Use the signs to determine which corner the
normal points toward.

e Example: If the normal signs are { +, +, - }, then the
p-vertex iIs { box.radius.x, box.radius.y, -box.
radius.z }.

13-October-2007 © Copyright Ian D. Romanick 2007

Pseudo Code

int frustum_aabb(Plane *planes, Aabb &aabb)

{

}

bool intersect = false;
for (unsigned 1 = 0; 1 < 6; i++) {
vector vn =
get_negative_far_point(planes[i], aabb);
1f (vn.dot3(planes[i].n) + planes[i].d > 0)
return OUTSIDE;

vector vp =
get_positive_far_point(planes[i], aabb);
1f (vp.dot3(planes[i].n) + planes[i].d > 0)
intersect = true;

}
return (intersect) ? INTERSECTING : INSIDE;

13-October-2007 © Copyright Ian D. Romanick 2007

References

http://www.ce.chalmers.se/~uffe/vic_bbox.pdf

http://www.ce.chalmers.se/~uffe/vfc.pdf

13-October-2007 © Copyright Ian D. Romanick 2007

http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf
http://www.ce.chalmers.se/~uffe/vfc.pdf

Break

13-October-2007 © Copyright Ian D. Romanick 2007

Next week...

> Convex hulls (this time for sure!)

> Bounding volume hierarchies
e Building
® Traversing
® Merging

> Assignment #1 due.

> Assignment #2 assigned.

13-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement

> This work represents the view of the authors and does not necessarily
represent the view of IBM or the Art Institute of Portland.

> OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

= Khronos and OpenGL ES are trademarks of the Khronos Group.

> Other company, product, and service names may be trademarks or
service marks of others.

13-October-2007 © Copyright Ian D. Romanick 2007

